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ABSTRACT

With the increasing importance of multiple platform/multiple remote sensing missions, fast and

automatic integration of digital data from disparate sources has become critical to the success of

these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a

correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is

tested successfully with data from the NOAA Advanced Very High Resolution Radiometer

(AVHRR) and the Landsat/Thematic Mapper (TM), which differ by translation and/or rotation. By

the choice of high-frequency wavelet features, this method is similar to an edge-based correlation

method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method

achieves higher computational speeds for comparable accuracies. This algorithm has been

implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the

MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium

workstations.
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1. REGISTRATION OF SATELLITE REMOTE SENSING IMAGERY

1.I Why Geo-Registration

Digital image registration is very important in many applications of image processing, such as

medical imagery, robotics, visual inspection, and remotely sensed data processing [1,2]. For all of

these applications, image registration is defined as the process which determines the most accurate

match between two or more images acquired at the same or at different times by different or

identical sensors. Registration provides the "relative" orientation of two images (or one image and

other sources, e.g., a map), with respect to each other, from which the absolute orientation into an

absolute reference system can be derived. Image registration is usually motivated by such goals as

object recognition, model matching, pose estimation, or change detection. In this paper, we will only

refer to remote sensing applications, for which automated image geo-registration has become a

highly desirable technique.

In the near future, satellite remote sensing systems will provide large amounts of global

coverage and repetitive measurements representing multiple-time or simultaneous observations of

the same features by different sensors. Also, with the new trend of smaller missions, most sensors

will be carried on separate platforms, resulting in a tremendous amount of data that must be

combined. In meeting some of the NASA/Earth Science Enterprise objectives [2], the combination

of all these data at various resolutions - spatial, radiometric and temporal - will allow a better

understanding of Earth and space science phenomena. For example, for land cover applications, the

combination of coarse-resolution viewing systems for large area surveys and finer resolution

sensors for more detailed studies offer the multilevel information necessary to accurately assess the

areal extent of important land transformations. High-resolution sensors, such as Landsat or SPOT

are very good for monitoring vegetation changes, e.g., changes in forest cover [3-7], when

landscape features are local in scale. However, studies at a global or continental scale at high spatial

and temporal resolutions would require the processing of very large volumes of data. It is therefore

necessary to combine information from both types of sensors to conduct feasible, accurate studies.

Summarizing the different applications of geo-registration, the different categories defined by

[1] can be described in terms of remote sensing applications and include:

(1) data fusion, new sensor calibration [8], or multimodal registration which enables the integration

of complementary information from different sensors as well as super-resolution [9];

(2) change detection [10,11], and Earth resources surveying, or temporal registration performed to

monitor and measure agricultural, geological or land cover features extracted from data obtained
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from oneor severalsensorsoveraperiodof time.Cloudremovalisanotherapplicationof temporal

registration,whenobservationsoverseveraldayscanbefusedtocreatecloud-freedata;

(3) landmarknavigation,formationflying andplanetexploration,or viewpoint registration which

integrates information from one moving platform or multiple platforms flying together into three-

dimensional models; and

(4) content-based [12] or object searching, map updating, or template registration which looks for

the correspondence between new sensed data and a previously developed model or dataset.

All these examples illustrate how geo-registration is a critical process, and how the amount of

data which will have to be registered in the future will grow exponentially. Some of the examples

also show that registration will need to be performed in real-time and often without human

intervention. These two last remarks bring us to the issue of automatic geo-registration: the final

goal of our work is to design fast and accurate methods for the automatic registration of multi-

sensor remotely sensed data. The scope of this paper represents the first step towards this future

goal, showing how wavelets can be integrated in the registration process, demonstrating it with

examples from a few Earth remote sensing sensors, and implementing this algorithm on high-

performance parallel computers.

1.2 Why Automatic Geo-Registration

Automatic image registration, which has been extensively studied in other areas of image

processing, is still a complex problem in the framework of remote sensing. Often, the most

common approach to registration is to extract a few outstanding characteristics of the data, which

are called control points (CP's), tie-points, or reference points; then the CP's in both images are

matched by pair and used to compute the coefficients of a bivariate polynomial, usually of degree

three maximum. In some cases, the CP's are recorded geographic features, also known as Ground

Control Points (GCP's), but sometimes the CP's correspond to high-contrast data points (such as

crossroads, bends in rivers). Most available systems follow this registration approach, often

assuming some interactive choice of the CP's, and those systems are not well suited for the

automatic processing of a large number of data, because polynomials require either a few very

accurate control points or many inaccurate ones, but well-distributed over the image. In both cases,

it is obvious that such a point selection represents a repetitive and labor-intensive task and becomes

prohibitive for very large amounts of data. Also, this approach is unpractical when the registration

has to be done in real-time, for example for navigation purposes.
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Anotherissueof automatic geo-registration is accuracy. Since the interactive choice of control

points in satellite images is sometimes difficult, too few points, inaccurate points, or ill-distributed

points might be chosen, and as a result, large registration errors created. Such errors lead to data

analysis errors as shown in two studies reported in [13,14]. The two studies demonstrate that a

small error in registration may have a large impact on the accuracy of global change measurements

and that, for example, a registration accuracy of less than 0.2 pixel is required to achieve change

detection errors of less than 10%.

As a summary, for reasons of speed, portability, and accuracy, automatic geo-registration is an

important requirement to ease the work load, speed up processing, and improve the accuracy in

locating a sufficient number of well-distributed accurate tie-points. Such a technique can also be

integrated in an hybrid automatic-manual cooperative registration which is preferred for some

applications.

In the remainder of this paper we briefly review previous automatic registration methods, then

we describe how to utilize wavelets for registration purposes and the parallel implementation of

such a wavelet-based algorithm. Finally, some results are presented and future work is described.

2. REGISTRATION - A BRIEF SURVEY

2.1 Which Distortions Must be Corrected

The distortions described in [15] for Landsat-MSS data are general enough to account for most

sensors directed at the Earth. Distortions are defined by the combined effects of sensor operation,

the Earth's rotation, orbit and attitude anomalies and atmospheric and terrain effects. These

distortions, which are noticeable when dealing with only one sensor, are even larger when

considering multiple sensors carried by multiple platforms on different orbits. Refer to [15,16] for

a good description of distortion sources and distortion categories. Distortions of airborne sensors

are also described in [17].

In this paper, we will assume that distortions relative to sensor operation, Earth's rotation, and

atmospheric effects have been corrected as part of a "systematic" correction. As a first

approximation, we will only be dealing with "precision" correction for orbit and attitude

anomalies. This type of distortion mainly corresponds to an affine transformation. A few other
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small continuousnon-lineardistortionsdue to altitude,velocity,yaw, pitch, and roll could be

handledby globalor localpolynomialtransformationsof higherdegree.

2.2 Registration Steps and Issues

We assume that any new incoming sensed image is being registered relative to a known

reference image. We also assume that sensed image and input image are synonymous. According

to Brown [ 1], image registration can be viewed as the combination of four components:

(1) a feature space, i.e. the set of characteristics used to perform the matching and which are

extracted from reference and input data;

(2) a search space, i.e. the class of potential transformations that establish the correspondence

between input data and reference data;

(3) a search strategy, which is used to choose which transformations have to be computed and

evaluated; and

(4) a similarity metric, which evaluates the match between input data and transformed reference

data for a given transformation chosen in the search space.

The transformation which gives the best match according to the similarity measure is also called the

deformation model or the mapping function. According to some a priori knowledge of the data,

different search spaces may be chosen. For the reasons given in section 2.1, transformations that

are often used are rigid transformations (composed of a scaling, a translation and a rotation), affine

transformations (composed of a rigid transformation, a shear and an aspect-ratio change; a shear

in the x-axis transforms the x-coordinate into a linear combination of both x and y-coordinates, and

the aspect-ratio is defined as the numerical ratio of image width to height), and polynomial

transformations. Correlation measurement is the usual similarity metric [18], although it is

computationally expensive and noise sensitive when used on original gray level data; using a multi-

resolution search strategy enables large reductions in computing time and increases the robustness

of the algorithms. Other similarity metrics are described in [19], and a comparison of isometric

(which preserves distances) versus polynomial transformations is given in [20]. Although high-

order polynomials are superior to isometric transformations when the deformation includes more

than a translation and a rotation, isometric transformations are more accurate when a smaller

number of points is available and are less sensitive to noise and to largely inconsistent tie-points.

Several feature extraction and feature matching methods have been integrated and compared in a

system developed by Rignot et al [21]. Most previous methods are applied on an image-to-image

basis, i.e. band-to-band of multivariate data.
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Anotherway to classifyregistrationmethodsis adoptedby Fonsecaet al. [11], wheretwelve

recent registrationmethodsare describedaccordingto the type of their feature extraction.

Automaticfeatureextractionis either area-basedor feature-based,the feature-basedprocess

occurringeitherin thespatialdomainor in thetransformdomain.

In thissection,wewill take another viewpoint to describe a majority of the registration methods

found in the literature in the past thirty years, and which have the potential to be applied to remote

sensing images. As previously described, a usual semi-manual registration first manually

determines corresponding control points before computing the deformation model. Automatic

methods can be classified into two types, those which follow a human approach, with a point-to-

point matching, and those which take a global matching approach. In section 3, we describe a two-

step approach in which the first step does not rely on point to point matching of control points to

compute a first estimate of the mapping function.

Among the methods which perform point-to-point matching [22-41 ], the most common control

points are the centers of gravity of regions (Cracknell [24], Flusser [27], Goshtasby [29,30], Li et al

[38], Ton [23], Ventura [34]) with or without region attributes such as areas, perimeters, ellipticity

criteria, affine-invariant moments [40], and inter-regions distances. More recently, several authors

(Corvi [25], Djamdji [26,41], Li&Zhou [32,39], Chellappa et al [35,36]) have been using features

extracted from a wavelet decomposition. Some examples are maxima and minima of wavelet

coefficients, high-interest points or local curvature discontinuities. A few methods [17] utilize

Delaunay triangulation methods to progressively increase the number of accurate control points.

The main difficulty associated with point-to-point matching occurs with missing or spurious points,

which makes the matching process more difficult and less reliable [9,20,22,23].

Among the global methods [9,19,42-54], the transformation is either found by correlation or by

optimization, in the spatial or in the frequency domain. When in the spatial domain, correlation or

optimization is performed either in the original data or on edge gradient data. Another method

proposed by Stockman [49] involves the computation of a "Hough accumulator" for all the

transformations matching edge segments or vectors linking feature points. Some recent research

(Thevenaz and Unser [42,50]) has also focused on the use of wavelets for global image registration.

Other more recent methods are also described in [55]. We qualitatively compare our work to all

the registration methods based on wavelet transforms in section 3. Section 4 describes how the first

step of this approach has been implemented on parallel computers, while section 5 shows results of

our technique applied to several remote sensing image data.
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3. REGISTRATION USING WAVELETS

Our goal is to define fast, accurate methods for the automatic registration of remotely sensed

data. The accuracy of these methods will be defined by the choice of the search strategy

(component 3 in the registration definition), which could itself be a component of a general

planning strategy [56] choosing a trade-off between accuracy and speed of the proposed methods

according to the user's needs.

To solve the problem of missing or spurious points in the matching process, we propose to

solve the registration problem in two steps:

Ste_p_2

The mapping function is computed globally over the images, without individual matching

of control points. This step provides a good first estimate of the mapping function,

chosen in this work as a composition of rotations and translations.

Many strong and well-distributed features are extracted throughout the images and the

previous transformation is utilized to perform the matching. Sub-pixel accuracy can be

achieved if the number of matched pairs is much larger than the minimum number

required to compute the final deformation model.

In this paper, we will focus on step 1 with an emphasis on the computational speed and on the

ability of the developed techniques to handle multi-sensor data; these two requirements brought us

to the utilization of multi-resolution wavelet transforms. Briefly, a wavelet decomposition of any

given signal (I-D or 2-D) is the process which provides a complete representation of the signal

according to a well-chosen division of the time-frequency (I-D) or space-frequency (2-D) plane.

Through iterative filtering by low-and high-pass filters, it provides information about low- and

high-frequencies of the signal at successive spatial scales. See references [57-61] for more detail on

wavelet transforms. The choice of using wavelets is justified by the following reasons:

(1) Multi-resolution wavelets, largely used for data compression and browsing, are used as a first

step to bring the multiple types of data to the same resolution without losing significant information

and without blurring the higher resolution data. Multi-resolution wavelet decomposition preserves

most of all important features of the original data even at a lower resolution, especially global scale

features such as rivers, roads, and lakes.

(2) Further multi-resolution wavelet decomposition highlights strong image features at the lower

resolution thus eliminating weak higher resolution features.
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(3)Themulti-resolutioniterativesearchfocusesprogressivelytowardsthefinal transformationwith

a searchinterval decreasing and an accuracy increasing at each iteration. This algorithm achieves

higher accuracies with higher speeds than a full search at full resolution.

(4) Multi-resolution wavelet transforms can be implemented very easily on a parallel computer.

3.1 Choice of Wavelet Coefficients

Different choices of wavelet transforms can be made; we chose to use orthonormal wavelets.

The main advantage of orthonormal wavelets is their computational speed, but their main

disadvantage is their lack of translation-invariance, which means that the wavelet transform does not

commute with the translation operator. According to the Nyquist criterion, in order to distinguish

between all frequency components and to avoid aliasing, the signal must be sampled at least twice

the frequency of the highest frequency component; therefore when using a separable orthogonal

wavelet transform, information about the signal may change within or across subbands [64]. In

order to assess the useability of orthonormal wavelets for image registration, we conducted a study

where the use of wavelet subbands was quantitatively assessed as a function of features' sizes. This

study reported in Stone et al [62] shows that using cross-correlation and orthogonal wavelet filters

is still a useful registration scheme in spite of translation effects. The results are summarized here,

see [62] for more details:

• the low-pass subband is relatively insensitive to translation, provided that the features of interest

have an extent at least twice the size of the wavelet filters.

• the high-pass subband is more sensitive to translation, but the peak correlations are still high

enough to provide an accurate registration.

From the experiments reported in this paper, we also observed that a local lack of translation

invariance is compensated by taking a global approach instead of a point-to-point matching, and by

the combination of information from several image subbands. To further investigate this issue,

other translation-invariant wavelet transforms [63-65,75] are now being studied.

According to Mallat [61], an orthonormal basis of wavelets can be defined by a scaling function

and its corresponding conjugate filter L. In this case, the wavelet decomposition of an image is

similar to a quadrature mirror filters decomposition with the low-pass filter L and its mirror high-

pass filter H; this decomposition is summarized in Figure 1. The filters L and H are one-

dimensional of varying size depending on the application (see [59] for more detail). For registration

purposes, we have tested all filter sizes between 2 and 20 and have found 4, 6, or 8 to be the most

useful filter sizes. Below size 4, the size 2-Haar filter might create step edges in the filtered data,
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whileabovesize8,edgeblurringoccurs.Wewill call LL, LH, HL andHH the four sub-images(or

subbands)createdateachlevelof decomposition.

In orderto choosewhichwaveletcoefficientsto usefor registrationpurposes,we first applied

thiswaveletdecompositiontotheimageof a humanface,wherestrongfeaturesareeasyto extract

visually.Results,reportedin (Le Moigne [66,67],showthatthestrongestfeaturesappearin either

oneof thetwo bandsLH orHL, with theLow/High (LH) bandemphasizinghorizontalfeaturesof

thesignalandtheHigh/Low (HL) bandemphasizingverticalcharacteristics.The High/High (HH)

subbandtheoreticallycorrespondsto diagonalfeatures,but ascanbeseenin [66], the information

containedin theHH subbandalso includesa largeproportionof high-frequencynoise.Further

workon theuseof thedifferentsubbandscanalsobe found in our relatedwork [62]. From these
observations,wechoseto utilizethemaximaof the LH and HL bandsas the featureset of our

registrationalgorithm.

3.2 Idea of the Algorithm

According to the registration framework given by Brown[l], our algorithm can be described by

the four following components:

1. The feature space

After performing the wavelet decomposition of both reference and input images, the histograms

of LH and HL images are computed for all levels of decomposition. Then, only those points whose

intensities belong to the top x% of the histograms are kept (x being a parameter of the program

whose selection can be automatic); we call these points "maxima of the wavelet coefficients" (or

"maxima"), and these maxima form the feature space. We will see in section 5.1 that when x is

automatically selected, its value varies between 13% and 15%.

2. The search space

The search space is composed of 2-D rotations and translations. Unless otherwise specified by

the user, the system looks for rotations with angles included in the interval [0,90degrees] and for

translations in the interval [0, half-the-maximum-dimension-in-the-reference-image]; more

generally, the search can be reduced by utilizing a-priori information about the sensor movement

and the satellite navigation system, as well as their corresponding accuracies.

3. The search strategy

The search strategy follows the multiresolution approach provided by the wavelet

decomposition. At the highest level of decomposition, the search is exhaustive over the whole
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searchspacebut with anaccuracyequalto A. The first approximation of the best rotation, R,, is

chosen over this search space; then R, becomes the center of a new search interval of length

2A, JR,- A, Rn+ A], and at the next lower level, the new approximated rotation, R,__, is found within

this search interval with an accuracy of M2. This process is repeated until the first level of wavelet

decomposition, where the search interval is [R 2- A/2 n2, R2+ A/2 n2] and the final registration

rotation, R_, is found with an accuracy equal to A/2 "l. In particular, if 6 is the desired registration

accuracy, A is chosen as 2nt_i, where n is the number of levels of wavelet decomposition. Table 1

summarizes this search strategy, and Table 2 summarizes the algorithm for four levels of

decomposition, an image of size 512x512, a search for rotations, and an initial accuracy, & equal to

10 degrees.

In some cases, for reasons of robustness, even if the final desired accuracy 6 does not require A

to be small at the lowest resolution level, smaller accuracy steps can be considered for the initial

step, and then the previous process described in Table 1 can be applied starting at level n-l, once the

initial approximation of the transformation has been computed. This strategy avoids pursuing a

false path in the search for the optimal transformation. Other authors [51] have proposed to

simultaneously pursue several paths, but this requires more computations.

Similarly, in the case of a composition of a rotation and a translation, the search is performed

simultaneously on the three parameters, rotation angle, shift in x-direction and shift in y-direction.

To reduce the amount of computations, another solution is shown in Table 3 where the search over

three parameters is decomposed at intermediate levels into two searches in the complementary sub-

spaces, sub-space of translations and sub-space of rotations. At each intermediate level of

decomposition, the rotation is first assumed to be known and the translation is refined, then the

translation is assumed to be known and the rotation is refined. Decomposing the main search into

two "sub-searches" reduces dramatically the amount of computations, as shown in Table 3. A first

approximation of the scale can be found by utilizing a Fourier-Mellin transform [46] or a log-polar

transform [77] that transform the search for rotation or scale into a search for translation in the new

transformed space. Once an approximation of the scale is found, a similar approach using "sub-

searches" can be taken when searching for a rigid or an affine transformation.

4. The similarity metric

The similarity metric of our registration algorithm is a cross-correlation measure. At each level,

the best transformation is found by computing the successive correlations between wavelet

coefficients of the input image and transformed wavelet coefficients of the reference image. The
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transformationwhich correspondsto thehighestcon'elationis chosenas the centerof the next
searchinterval.

(a)

(B)

(c)

The registration algorithm is then described as follows:

Wavelet Decomposition of Reference Image.

Wavelet Decomposition of Input Image. Find maxima of LH and HL coefficients for each

level of decomposition after histogram computation.

Starting from last level of decomposition and then iteratively for each level going up, find the

best match between maxima of wavelet coefficients of input image and rotated and/or

translated maxima of the wavelet coefficients of the reference image. The best transformation

is then refined iteratively and with increasing accuracy, as previously described.

Compared to an edge-based correlation performed on the original data which would require 360

floating point operations per pixel, our wavelet-based registration only requires 110 floating point

operations per pixel.

Unlike our method, most wavelet-based registration approaches (as described in section 2.2)

utilize a control-point matching approach, except for the methods described by Thevenaz and Unser

[42,50] and by Olivo [48], which differ either by the type of wavelets, the type of features and/or the

similarity metric, as well as by the application domain. A feature space similar to ours is used by

Corvi [25] and Djamdji [26], although Corvi also uses wavelet minima. Djamdji's approach also

differs by the type of wavelet decomposition, which is an "algorithme a trous" with a non-

decimating approach. Li and Zhou [32,39] compute multi-resolution edges and high-interest points

on these contours to perform the matching. Zheng and Chellappa [36] utilize a multi-resolution

Gabor wavelet, the maxima of an energy measure to find local curvature discontinuities and a local

correlation on windows around these maxima to perform the point-to-point matching. The latter two

methods have been mainly tested on aerial and SAR imagery.

We have tested our method on several scenes of remote sensing imagery (as well as human face

images, see [66]). Our approach is summarized by the following characteristics:

- the matching is performed globally instead of point by point which, in the absence of a-priori

knowledge, decreases the risk of computing a match based on too few inaccurately paired points;

- the search strategy takes advantage of the multi-resolution decomposition to speed up the process

and to reduce the effect of noise, since lowering image resolution removes high-frequency noise;

the matching is computed on significant features (the maxima) instead of all pixels, which

increases the control of the algorithm over noise, and reduces computation time; and
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- thetuningof parametersis minimal.Theonly parameter,x, which controls the number of maxima

chosen from the histograms, can be computed adaptively within the program, as will be explained in

section 5.1.

4. PARALLEL IMPLEMENTATION

Since both the need for image registration and the amount of data to register are going to grow

tremendously in the near future, the implementation of automatic image registration methods on

high-performance computers needs to be investigated. For this reason, our algorithm has been

implemented on a massively parallel computer, the MasPar MP-2, as well as on other parallel

computers [68-70]. The MasPar Parallel Processor is a fine-grained, massively parallel computer

with a Single Instruction Multiple Data (SIMD) architecture, consisting of 16,384 parallel

processing elements arranged in a 128x128 matrix and connected by an eight nearest neighbors

interconnection network. The reasons for using a MasPar were two-fold: first, the MasPar was very

easily accessible to our research group, second a SIMD architecture is very appropriate to the

computation of wavelet decomposition, which is essentially a pixei-parallel type processing. Other

tests implementing a wavelet decomposition using a Cray T3D, an lntel Paragon, a Beowulf

computer and a Convex SPP are reported in [68] and show that the MasPar provides the best

speed-up, followed by the Cray T3D and then the Beowulf computer. The Beowulf, a Commercial-

Off-The-Shelf (COTS) parallel computer, is a cluster of PC's running parallel Linux.

Wavelet decomposition, using a succession of convolution and decimation operations, is

implemented in a straightforward fashion on a parallel architecture. Four consecutive pixels are

stored into four layers of the same Processing Element (PE), convolutions are performed

simultaneously at each PE and decimation is easily obtained by considering only half the number

of layers at each iteration. For a 512x512 image, a filter size 4, and four decomposition levels, the

computing time on the MasPar MP-2 is approximately 0.0154 seconds, compared to 4.87 seconds

for the sequential timing which represents an improvement of about 300. Table 4 shows some other

timing performances on the MasPar with different filter sizes. The results on the Beowulf (1.34

seconds) are very comparable to those obtained on the Cray T3D (0.75 seconds), which is very

encouraging for such a COTS-type architecture. See EI-Ghazawi et al [68] and Chan et al [69] for

more details on the parallel implementation of the wavelet decomposition.

As described previously, for registration purposes, maxima of the LH and HL wavelet

coefficients are found by computing the histograms of these two images, and choosing for each

-13-



imagea thresholdsuch that the thresholdedimagescontainat mostx% of the total number of

points in the image. For the above test, histogramming and thresholding are computed in 0.38

seconds on the MasPar. The new locations of the rotated pixeis are computed in parallel on all the

pixels. Each rotation takes about 0.02 seconds for an image up to 128x 128 (since the MasPar array

is of size 128x128), and 0.04 seconds for a 256x256 image. No complete systematic study of the

implementation of the wavelet-based registration was performed on the MasPar, but further studies

on the implementation of this registration on other parallel computers are reported in [70]. Table 5

shows some of these results. On the Beowulf architecture, the algorithm requires about 0.545

seconds when 16 processors are utilized, while it takes 0.196 seconds on the Cray T3E and 0.52

seconds on the Cray T3D, for the same number of processors. In general, Beowulf shows similar

or better performances than the Cray T3D. Furthermore, although Cray T3D and Cray T3E show

better scalability than Beowulf, Beowulf still exhibits a speed-up of 8 for 16 processors, which

shows a good ratio performance versus cost compared to other processors. See [70] for more

details on these results.

5. RESULTS

Results are shown using Landsat Thematic Mapper (see Figure 2), and AVHRR (see Figures 5

and 6) data. For all the examples below, nearest neighbor was used as the common resampling

function.

5.1 Landsat/TM

Figure 2a is a 512X512 image extracted from Band 2 of a Landsat-TM scene of the Pacific

Northwest. Figure 2c shows Figure 2a rotated 18 degrees; this rotation has been computed

independently to test the results given by our algorithm. Figures 2b and 2d show the four levels of

wavelet decomposition of Figures 2a and 2c, respectively, using a Daubechies filter size 4, and four

levels of decomposition. Figure 2a (straight) is taken as the reference image, and Figure 2c (rotated)

is considered as the sensed image. Figure 3 shows at each level the maxima which form the feature

space, and the rotations of these maxima for the reference image. We chose to perform the

registration with a final accuracy of I degree 05=1) which, according to Table 1, imposes the initial

search space to be [0,88] and the initial accuracy (or increment) to be 8 degrees (A=8). Then the

successive search spaces and accuracies follow the principle given in Table 2, according to the best

rotations found at each step. The final correct rotation is retrieved as 18 degrees.
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The bestrotation at eachlevel is chosenas theone maximizingthe sum of the correlation
betweenLH bandsandthecorrelationbetweenHL bands.Thecorrelationresultsareillustratedin

Figure4; thesegraphsshowhowthetwocorrelationfunctionsLH andHL arequite differentat the

lowestlevel althoughtheysharethesamemaximum;it showsthatat this level,computingthe sum

of thetwo correlationmeasuresis very useful to choosea local maximum.Then,as the search
focusesmoreandmorearoundthe final transformation,the two curvesbecomemoreand more

similar,andarealmostidenticalatthehighestlevelof decomposition.Theseresultssuggestthatas

soonasthesearchspacehasbeennarrowedaroundthefinal transformation,only one of the two

functionsLH or HL couldbeutilized,thusreducingby half theamountof computation.

Anotherissueto consideris thedeterminationof theparameterx which defines the number of

maxima in each image. As shown in Table 6, this parameter can be computed adaptively by the

program; at the lowest level of resolution, the best transformation is computed successively for the

four values 5%, 10%, 15%, and 20% ofx. A correlation measure is associated to each of these four

computations. Then the parameter x is chosen as the sum of these four thresholds weighted by their

corresponding correlations:

x% = 5% * Correls, _ + 10% * Correl_o, _ + 15% * Correl_5 _ + 20% * Correl20_,.

This formula has been chosen after a few experiments that showed that below 5% too few features

remain in the images, and above 20% too much noise is taken into account. Table 6 shows example

details for the computation of the parameter x with different rotations and translations. For these

examples, the adaptive value of x varies between 13% and 15%. Since noise is higher in higher

resolution data, we have experimentally found it most effective to decrease x by an additional 2%

for each higher level of decomposition.

Other experiments were performed using Figure 2 as well as a test portrait image shown in

reference [66]. Both images were artificially transformed by a series of rotations and translations:

results are shown in Table 7. Compared to other simple correlation-based methods such as spatial

correlation, phase correlation, and edge-based registration, the results show that wavelet-based

registration performs as well or better than the other methods, and that the average rotation error

over these examples is 0.42 degrees and the average translation error is 0.17 pixels.

5.2 AVHRR/LAC

Figure 5 and Table 8 present results obtained with a 512x512 AVHRR-LAC image of the

Pacific Northwest area, which has been independently rotated by 5 degrees and translated by 10

columns and 6 rows. Figure 5 shows the original image. The wavelet decomposition was performed

-15-



usingaDaubechiessize4 filter. At the lowest level of decomposition, the previous adaptive search

is performed, leading to a threshold of 11% for level 3; then at each level, this threshold is

automatically decreased by 2%. At the lowest level, for a better robustness, as described in section

3.3, the search is performed with increments of 4 degrees in rotations and 4 pixels in translations.

Then, from level 3 up, the search strategy described in Table 1 is applied with final accuracies of 1

degree in rotations and 1 pixel in translations. After the search is completed, a rotation of 5 degrees

and a translation of (5.00,3.00) pixels are found in the 256x256 image; this result is interpolated as

a rotation of 5 degrees and a translation of (10.00,6.00) pixels in the full 512x512 image.

Other results were obtained with an AVHRR dataset which represents a series of thirteen 512

rows by 1024 columns AVHRR/LAC images over South Africa, navigated and georeferenced to a

geographic grid using an orbital model developed at the University of Colorado [71] which

assumes a mean attitude behavior (roll, pitch and yaw) derived using Ground Control Points [72].

A map of the coastline derived from the Digital Chart of the World (DCW) was generated for the

same geographic grid, and was used to visualize the registration before and after our process.

Figure 6 shows this dataset. Since no registration ground truth was available for these images, all

data have been manually registered, assuming only a translation transformation. The results of the

manual registration have been verified by superimposing the binary map of the coastlines onto the

respectively shifted images (see Figure 7). Most of the results obtained by manual registration are

verified as accurate by the coastline map. But for some of the data, especially very cloudy images,

manual results do not match the coastline map and cannot really be considered as "ground truth"

but only as "references" for accuracy purposes. Figure 7 shows some of the results of our

registration algorithm superimposed with the coastline. Overall the differences of registration

between the manual registration and our wavelet-based algorithm average 1.43 pixels and 1.05

pixels if the two most cloudy scenes, sa143 and sa146, are not included in this computation (see

Table 9).

Since misregistration errors occur mainly for cloudy scenes, we can use the knowledge of the

coastline to create a mask and reduce the search for the correct transformation in an area along the

coastline. In this last test, the consistency of the algorithm [78] is checked by looking in an area of

[-40,+40] pixels in the vicinity of the coastline and by performing inter-registration of all pairs of

scenes. From all these permutations of registrations, an average translation error is computed by

considering the sum of the errors on all triplets of scenes. After these computations, the average

translation error is of 0.425 pixels, which demonstrates sub-pixel consistency of our method.
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More generally,on-going experimentsare being performedto assessthe accuracyof our

algorithmasafunctionof translationandrotationamountsaswell asafunctionof noise[79].

6. CONCLUSION

We have presented a method for image registration based on wavelet decomposition and

correlation, which shows promising results for fast registration of digital remotely sensed images.

The characteristic features of the images are computed automatically through wavelets and the

matching is done globally over the image, instead of locally for each pair of control points. The

deformation model is assumed to be the composition of a rotation and a translation. For rigid and

affine transformations, the approach can be generalized by using sub-searches or by replacing the

exhaustive search by an optimization or a statistically robust feature matching [73,74]. One of the

main advantages of this approach is its ease of implementation on high-performance parallel

architectures, such as the massively parallel computer, MasPar MP-2, or a Beowulf cluster of

workstations.

The final step of the algorithm will utilize this first global transformation to locate and match

automatically a few accurate reference points in the high resolution data and will refine locally the

transformation. In a multi-resolution/multi-sensor framework, wavelet decomposition is first

utilized to bring both sets of data to the same resolution, then it is used for registration purposes

[76].

Future work will also include the study of other types of wavelets, the integration of cloud

masks, when available, and a quantitative evaluation of our method relative to different test data as

well as compared to other registration techniques; a first evaluation was performed [73] and will be

continued. Automatic registration of remotely sensed data is a very complex problem, and as stated

by other authors [11,21], we feel that only a future system that integrates multiple automated

registration techniques will be able to address such a task for multiple types of remote sensing data.

-17-



ACKNOWLEDGEMENTS

The authors would like to acknowledge Compton Tucker, Eric Vermote, Nazmi EI-Saleous, and

Nadine Laporte for providing remotely sensed data, as well as for sharing their knowledge and

expertise. The authors would also like to thank the CESDIS Science Council, and the members of

Code 935 registration group, especially Tarek El-Ghazawi, Prachya Chalermwat, and Ilya Zavorin,

as well as the reviewers of this paper for valuable help and comments about our work.

-18-



°

.

°

°

.

°

.

*

°

10.

11.

12.

13.

14.

REFERENCES

L. Brown, "A Survey of Image Registration Techniques," ACM Computing Surveys, Vol. 24,

No. 4, 1992.

Exploring Our Home Planet, Earth Science Enterprise, Strategic Plan, National Aeronautics
and Space Administration, January 2001.

J.P. Malingreau, C.J. Tucker, and N. Laporte, "AVHRR for Monitoring Global Tropical
Deforestation," International Journal of Remote Sensing, Vol. 10, Nos. 4&5, pp. 855-867,
1989.

V.V. Salomonson, W.L. Barnes, P.W. Maymon,H.E. Montgomery, and H. Ostrow,

"MODIS" Advanced Facility Instrument for Studies of the Earth as a System," IEEE
Transactions Geoscience and Remote Sensing, Vol. 27, 145-153, 1989.

D. Skole, and C.J. Tucker, "Tropical Deforestation and Habitat Fragmentation in the Brazilian
Amazon: Satellite Data from 1978 to 1988," Science, Voi. 260, 1905-1910, 1993.

J.R. Townshend, C.O. Justice, "Selecting Spatial Resolution of Satellite Sensors Required for

Global Monitoring of Land Transformations," International Journal of Remote Sensing, Vol.
9, No.2, 187-236, 1988.

Improved Global Data for Land Applications, A Proposal for a New High Resolution Data
Set. Report of the Land Cover Working Group of IGBP-DIS, Global Change Report No. 20,
ed. J.R.G. Townshend, 1992.

G.J. Jedlovec, and R.J. Atkinson, "Calibration, Navigation, and Registration of MAMS Data
for FIFE," NASA-TM-108397, 1993.

M. Irani, and S. Peleg, "Improving Resolution by Image Registration," Computer Vision,
Graphics, and Image Processing, Vol. 53, No.3,213-239, 1991.

D. Yuan, C.D. Elvidge, J.G. Lyon, and R.S. Lunetta, "North America Land Cover Change
Detection Using Historical MSS Data: Three Pilot Studies," Proceedings ECO RI0'94,
International Symposium on Resource and Environmental Monitoring, Rio de Janeiro, Brazil,
1994.

L.M.G. Fonseca, and B.S. Manjunath, "Registration Techniques for Multisensor Sensed
Imagery," Photogrammetric Engineering and Remote Sensing Journal, Vol. 62, No. 9, 1049-

1056, Sept. 1996.

R.F. Cromp, and W.J.Campbell, "Data Mining of Multidimensional Remotely Sensed
Images," in Proceedings of 2nd International Conference in Information and Knowledge
Management, Washington, D.C, 471-480, 1993.

J. Townshend, C.O. Justice, C. Gurney, and J. McManus, "The Impact of Misregistration on

Change Detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 5,
1992.

X. Dai and S. Khorram, "The Effects of Image Misregistration on the Accuracy of Remotely

Sensed Change Detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36,
No.5, September 1998.

-19-



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

P. Van Wie, and M. Stein, "A Landsat Digital Image Rectification System," IEEE
Transactions on Geoscience Electronics, Vol. GE-15, No. 3, 130-137, 1977.

J.A. Richards, Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag, 2nd
Edition, 1993.

B.J. Devereux, R.M. Fuller, L. Carter, and R.J. Parsell, "Geometric Correction of Airborne

Scanner Imagery by Matching Delaunay Triangles," Int. J. Remote Sensing, Vol. 11, No. 12,
2237-2251, 1990.

W.K. Pratt, "Correlation Techniques of Image Registration," IEEE Transactions on
Aerospace and Electronic Systems, Vol. AESI0, No. 3, 353-358, 1974.

D.I. Barnea, and H.F. Silverman, "A Class of Algorithms for Fast Digital Registration," IEEE
Transactions on Computers, Voi. C-21,179-186, 1972.

Y.C. Hsieh, D. McKeown, and F.P. Pedant, "Performance Evaluation of Scene Registration
and Stereo Matching for Cartographic Feature Extraction," IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 14, No. 2, 1992.

E.J.M. Rignot, R. Howk, J.C. Curlander, and S.S. Pang, "Automated Multisensor
Registration: Requirements and Techniques," Photogrammetric Engineering & Remote
Sensing, Vol. 57, No. 8, 1029-1038, 1991.

P.D. Fiore, "Image Registration Using Both Distance and Angle Information," in
International Conference on Image Processing, Washington, D.C., Oct.23-26, 1995.

J. Ton, A.K. Jain, "Registering Landsat Images by Point Matching," IEEE Transactions in
Geoscience and Remote Sensing, Vol. 27, No. 5, 1989.

A.P. Cracknell, and K. Paithoonwattanakij, "Pixel and Sub-Pixel Accuracy in Geometrical
Correction of AVHRR Imagery," International Journal of Remote Sensing, Vol. 10, Nos. 4,5,
661-667, 1989.

M. Corvi, M., and G. Nicchiotti, "Multiresolution Image Registration," in Proceedings 1995
IEEE International Conference on Image Processing, Washington, D.C., Oct. 23-26, 1995.

J.P. Djamdji, A.Bijaoui, and R.Maniere, "Geometrical Registration of Images. The
Multiresolution Approach," Photogrammetric Engineering & Remote Sensing Journal, Vol.
59, No. 5, May 1993.

J. Flusser, "An Adaptive Method for Image Registration," Pattern Recognition, Vol. 25, No. 1,
45-54, 1992.

J. Flusser, and T. Suk, "A Moment-Based Approach to Registration of Images with Affine
Geometric Distortion," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No.
2, 382-387, 1994.

A. Goshtasby, "Registration of Images with Geometric Distortions," IEEE Transactions in
Geoscience and Remote Sensing, Vol. 26, No. 1, 60-64, 1988.

A. Goshtasby, G. Stockman, and C. Page, "A Region-Based Approach to Digital Image
Registration with Subpixel Accuracy," IEEE Transactions on Geoscience and Remote
Sensing, Vol. GE-24, No. 3, May 1986.

- 20 -



31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

B. Kamgar-Parsi, J.L. Jones, and A. Rosenfled, "Registration of Multiple Overlapping Range
Images: Scenes Without Distinctive Features," IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 13, No. 9, 857-871, 1991.

H. Li, and Y-T. Zhou, "Automatic EO/IR Sensor Image Registration," in Proceedings 1995
IEEE International Conference on Image Processing, Washington, D.C., Oct. 23-26, 1995.

B. S. Manjunath, C. Shekhar, and R. Chellappa, "A new approach to image feature detection
with applications," Pattern Recognition, Vol. 29, No. 4, 627-640, 1996.

A.D. Ventura, A. Rampini, and R. Schettini, "Image Registration by the Recognition of
Corresponding Structures," IEEE Transactions Geoscience and Remote Sensing, Vol. 28, No.
3, 305-387, 1990.

Y.-S. Zhang, P. Burlina, and R. Chellappa, "Semi- and Fully-Automatic Techniques for Image
to Site Model Registration," IEEE Transactions on Image Processing, 1996.

Q. Zheng, and R. Chellappa, "A Computational Vision Approach to Image Registration,"
IEEE Transactions on Image Processing, vol. 2, p. 311-326, 1993.

A.J. Lee, N.H. Carender, D.J. Knowlton, D.M. Bell, and J.K. Bryan, "Fast Autonomous

Registration of Landsat, SPOT, and Digital Imagery," SPIE Aerosense, Integrating
Photogrammetric Techniques with Scene Analysis and Machine Vision, April 11-16, Orlando,
1993, 68-79.

H. Li, B.S. Manjunath, and S.K. Mitra, "A Contour-Based Approach to Multisensor Image
Registration," IEEE Transactions on Image Processing, vol. 4, no. 3, pp. 320-334, 1995.

H.H. Li, and Y.-T. Zhou, "A Wavelet-Based Point Feature Extractor for Multi-Sensor Image

Registration," in SPIE Aerosense Wavelet Applications 11I, Orlando, Florida, pp. 524-534,
1996.

Z. Yang, and F.S. Cohen, "Image Registration and Object Recognition Using Affine
Invariants and Convex Hulls," IEEE Transactions on Image Processing, Vol.8, No.7, July

1999, 934-946.

J.P. Djamdji and A. Bijaoui, "Disparity Analysis: A Wavelet Transform Approach," IEEE
Transactions on Geoscience and Remote Sensing, Vol. 33, No. 1, January 1995, 67-76.

P. Th6venaz, U.E. Ruttimann, and M. Unser, "A Pyramid Approach to Sub-Pixel Registration

Based on Intensity," 1EEE Transactions on Image Processing, Vol.7, pp. 27-41, Jan. 1998.

L.-H. Lee, and L.-C. Chen, "A New Method for Automated Control Point Selection in Image

Registration," in Close-Range Photogrammetry Meets Machine Vision, Zurich, Switzerland,
1990.

R.L. Allen, F.A. Kamangar, and E.M. Stokely, "Laplacian and Orthogonal Wavelet Pyramid

Decompositions in Coarse-to-Fine Registration," IEEE Transactions on Signal Processing,
vol. 41, no. 12, December 1993.

P. Anuta, P., "Spatial Registration of Multispectral and Multitemporal Digital Imagery Using
Fast Fourier Transform Techniques," IEEE Transactions on Geoscience Electronics, vol.
GE-8, no. 4, October 1970.

-21 -



46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Q.S. Chen, M. Defrise, and F. Deconinck, "Symmetric Phase-Only Matched Filtering of
Fourier-Mellin Transforms for Image Registration," IEEE Transactions on Pattern Analysis

andMachine Intelligence, vol. 16, no. 12, pp. 1156-1168, 1994.

B.D. Lucas, and T. Kanade, "An Iterative Image Registration Technique with an Application to
Stereo Vision," in 1981 DARPA Image Understanding Workshop, April 1981.

J.-C. Olivo, J. Deubler, C. Boulin, "Automatic Registration of Images by a Wavelet-Based

Multiresolution Approach," in SPIE Wavelet Applications in Signal and Image Processing

III, San Diego, CA, July 12-14, 1995.

G. Stockman, S. Kopstein, and S. Bennett, "Matching Images to Models for Registration and
Object Detection via Clustering," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. PAMI-4, no.3, pp. 229-241, 1982.

M. Unser, and A. Aldroubi, "A Multiresolution Image Registration Procedure Using Spline

Pyramids," in Proceedings SPIE, Mathematical Imaging: Wavelet Applications in Signal and

Image Processing, San Diego, 1993.

Y.F. Wu, and H. MaTtre, "A Multiresolution Approach for Registration of a SPOT Image and

a SAR Image," in Proceedings oflOth Annual International Geoscience and Remote Sensing

Symposium, pp. 635-638, May 1990.

H. Shekarforoush, M. Berthod, and J. Zerubia, "Subpixel Image Registration by Estimating

the Polyphase Decomposition of the Cross-Power Spectrum," Proceedings Computer Vision
and Pattern Recognition 1996, 532-537.

R.C. Hardie, K.J. Barnard, and E.E. Armstrong, "Joint MAP Registration and High-

Resolution Image Estimation Using a Sequence of Undersampled Images," IEEE
Transactions on Image Processing, Vol.6, No. 12, December 1997, 1621-1633.

R.J. Althof, M.G.J. Wind, and J.T. Dobbins, "A Rapid and Automatic Image Registration

Algorithm with Subpixel Accuracy," IEEE Transactions on Medical Imaging, Vol. 16, No. 3,
June 1997, 308-316.

"Special Issue on Image Registration," edited by A. Goshtasby and J. Le Moigne, Pattern
Recognition, Vol. 32, No. 1, January 1999.

56. M. Boddy, J. White, R. Goldman, and N.M. Short, "Planning for Image Processing," in
Proceedings of the Goddard Conference on Space Applications of Artificial Intelligence,
NASA Goddard, Greenbelt, May 10-12, 1994.

57. S. Mallat, and S. Zhong, "Characterization of Signals from Multiscale Edges," IEEE
Transaction on Pattern Analysis and Machine Intelligence, vol. 4, no.7, pp. 71-732, July 1992.

58. C. Chui, Introduction To Wavelets, New York: Academic Press, 1992.

59. I. Daubechies, I., Ten Lessons on Wavelets, CMBS-NSF Series Applications in Mathematics,

SIAM, 1991.

60. G. Strang, "Wavelets and Dilation Equations: A Brief Introduction," SIAM Review, vol. 31,
no. 4, pp. 614-627, 1989.

- 22 -



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

7_°

S. Mallat, S., "A Theory for Multiresolution Signal Decomposition," IEEE Pattern Analysis
and Machine Intelligence, vol. PAMI- 11, no. 7, 1989.

H.S. Stone, J. Le Moigne, and M. McGuire, 1999, "Image Registration Using Wavelet
Techniques," IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI, Vol.
21, No. I0, October 1999.

D. Casasent, D., R. Shenoy, "New Gabor Wavelets with Shift-Invariance for Improved Time-
Frequency Analysis and Signal Detection," in Proceedings 1996 SPIE Wavelet Applications
Conference, Orlando, Florida: p. 244-255, 1996.

E.P. Simoncelli, W.T. Freeman, E.H. Adelson, and D.J. Heeger, "Shiftable Multiscale
Transforms," IEEE Transactions on Information Theory, vol. 38, pp. 587-607, 1992.

R.R. Coifman, and D.L. Donoho, "Translation-Invariant De-Noising," Wavelets and
Statistics Lecture Notes, ed. A. Antoniadis, Springer Verlag, 1995.

J. Le Moigne, "Parallel Registration of Multi-Sensor Remotely Sensed Imagery Using
Wavelet Coefficients," in Proceedings 1994 SPIE Wavelet Applications Conf., Orlando, pp.
432-443, 1994.

J. Le Moigne, J., "Towards a Parallel Registration of Multiple Resolution Remote Sensing
Data," in IGARSS'95, International Geoscience and Remote Sensing Symposium, Firenze,
Italy, July 10-14, 1995.

T. EI-Ghazawi and J. Le Moigne, "Wavelet Decomposition on High-Performance Computing
Systems," in 25-th International Conference on Parallel Processing (lCPP'96),
Bioomingdale, IL, August 1996.

A.K. Chan, C. Chui, J. Le Moigne, H.J. Lee, J.C. Liu, and T.A. EI-Ghazawi, "The
Performance Impact of Data Placement for Wavelet Decomposition of Two-Dimensional
Image Data on SIMD Machines," Frontiers'95, Fifth Symposium on the Frontiers of
Massively Parallel Computation, McLean, VA, Feb. 6-9, 1995.

T. EI-Ghazawi, P. Chalermwat, and J. Le Moigne, "Wavelet-Based Image Registration on
Parallel Computers," Supercomputing'97, San Jose, November 1997.

G.W. Rosborough, D.G. Baldwin, W.J. Emery, "Precise AVHRR Image Navigation," IEEE
Transactions on Geoscience and Remote Sensing, Vol. 32, No. 3, May 1994.

D. Baldwin, W. Emery, "Spacecraft Attitude Variations of NOAA-11 Inferred from AVHRR

Imagery," International Journal of Remote Sensing, Vol. 16, No. 3, 531-548, 1995.

J. Le Moigne, W. Xia, J.C. Tilton, T. EI-Ghazawi, M. Mareboyana, N. Netanyahu, W.J.
Campbell, and R.F. Cromp, 1998, "First Evaluation of Automatic Image Registation
Methods," IGARSS'98, International Geoscience and Remote Sensing Symposium, July 6-

10, 1998.

D.M. Mount, N.S. Netanyahu, and J. Le Moigne, 1999, "Efficient Algorithms for Robust
Feature Matching," Special Issue of Pattern Recognition on Image Registration, Vol. 32, No.
1, pps. 17-38, January 1999.

- 23 -



75.

76.

77.

78.

79.

N.G. Kinsgbury, "Shift Invariant Properties of the Dual-Tree Complex Wavelet Transforms,"
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Phoenix, March 16-19, 1999.

J. Le Moigne, A. Cole-Rhodes, R. Eastman, K. Johnson, J. Morisette, N. Netanyahu, and I.
Zavorin, "Multi-Sensor Registration of Earth Remotely Sensed Imagery," Proceedings of the
8-th SPIE International Symposium on Remote Sensing, Toulouse, France, September 17-21,
2001.

G. Wolberg and S. Zokai, "Robust Image Registration Using Log-Polar Transform,"
Proceedings of IEEE International Conference on Image Processing, Vancouver, Canada,

September 2000.

H.S. Stone, "Progressive Wavelet Correlation Using Fourier Methods," IEEE Transactions
on Signal Processing, Vol. 47, No. 1, pp. 97-107, January 1999.

J. Le Moigne, and I. Zavorin, "Use of Wavelets for Image Registration," SPIE Aerosense
2000, "Wavelet Applications VII", Orlando, FL, April 24-28, 2000.

- 24 -



Original or
Previous

Low-Pass

Results, Ik

Rows Columns

r-7-7 _ecimate_ _ _ . . [77"-,]
El L I--/Rows _LLk+l _--_lk+l I

fOecimate] /_--'---' / by 2 I ' '

--[ L ]._|Columns]__._ Lk+l I----_ "

L.__S__ [ by2 J 1 I "1

L['---_De° matl_Rows

"-""_ 1_ by 2 J '--"-_

L]_[ __)ecimate)

I--[ L I---lRows I--_ru_k÷,l
Decimate'] , , ] "''"_ [_ by 2 j

Columns]-'_ Hk+l _ r.,-. . -3
by 2 J ' ' ] e..........._ 119eclmatel

LI H I--/R°ws I--_nHk+_l
I_..L2....9 [ by2 j - i i

[-_ represents the convolution of the input image by the filter F

Figure 1
Decomposition by an Orthonormal Basis of Wavelets

- 25 -



Decamp. Level

n

n-I

n-2

2

1

Search Interval Accuracy Result Rotation

[0 ; 1-I/2] 2 n- 18 R n

[Rn-2n-18 ; Rn+2n-18] 2n-28 Rn_ 1

[Rn-l-2n-28 ; Rn- 1+2n-28] 2n-38 Rn-2

[R3-228 ; R3+228 ] 28 R 2

[R2-28 ; R 2+28] 8 R 1

Table 1

lterative Rotation Registration Using n Wavelet Decomposition Levels
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Wavelet
Level

Rotations of Reference Result: Rotation
Reference Wavelet Coefficient., Wavelet Coefficients Input Wavelet Coefficients with Best

Correlation

32 X 32

64 x 64

LH4r and HL4r

Wavelet Images

(Level 4)

LH3r and HL3r

Wavelet Images

(Level 3)

128 X 128 LH2r and HL2r

Wavelet Images

(Level 2)

256 X 256 LH Ir and HL Ir

Wavelet Images

(Level I)

Rotate both LH4 r and HL4r

by all rotations in [0,90 ° I

at a step of 10°.

Rotate both LH3 r and HL3r

by all rotations in
IRe 10*,R_+I0 ° l at a step of 5°.

Rotate both LH2 r and HL2r

by all rotations in

[R3-5°,R3+5 ° ] at a step of 2°.

Rotate both LHI rand HLlr

by all rotations in

[R3-2°,R3 +2° 1at a step of 1°.

Correlate Input Wavelet Images

LH4i (resp. HL4i) with all rotated

LH4r (resp. HL4r).

Correlate Input Wavelet Images

LH3i (resp. HL3i) with all rotated

LH3r (resp. HL3r).

Correlate Input Wavelet Images

LH2i (resp. HL2i) with all rotated

LH2r (resp. HL2r).

Correlate Input Wavelet Images

LHIi (resp. HLIi) with all rotated

LHIr (resp. HLIr).

R 4

R 3

R 2

R I

Table 2

Registration Algorithm - Search for Rotations,
for a 512x512 image, 4 levels of decomposition, accuracy=l degree
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Level Image Size

32 X 32

64x 64

128 X 128

I 256 X 256

Feature Space

LH and HL

Wave Coeff.

(Level 4)

LH and HL

Wave Coeff.

(Level 3)

LH and HL

Wave Coeff.

(Level 2)

LH and HL

Wave Coeff.

(Level I )

Search Space

Rotation

[ 0,101 (degrees)

with accuracy

of 4 degrees

104}

[ O4-10, O4+10 ]

with accuracy

of 60* 4

[ 03}

Search Space

Translation

I 0A61 x 10.161

with accuracy

of 4 pixels

12*Tx4-10.2*Tx4+10]

X [2*Ty4-10,2*Ty4+10]

with accu_cy

of 5 T *4

{Tx3l X {Ty3}

[2*Tx3-5,2*Tx3+51

X [2*Ty3-5.2*Ty3+51

with accuracy

of 8T *2

Result

(Tx4,Ty4, O4 )

(Tx3,Ty3, 0 4 )

(Tx3.Ty3, O 3 )

(Tx2,Ty2, O 3 )

card(search sp)

(if ST= 60=-I )

3*5*5=75

6*6=36

(would be 6*6*6= 216
if direct search )

6*6=36

[03 -5, O3+5 I

with accuracy

of SO *2

[02 -2, O2+2 I

with accuracy
of 60

ITx2} X {Ty2}

[2*Tx2-2,2*Tx2+2]

X 12*Ty2-2,2*Ty2+2]

with accu_cy

of 8T

(Tx2.Ty2.0 2 )

(TxI.Tyl. O 1 )

(would be 6*6*6= 216
if direct search )

5"5"5=125

Total = 284

(instead of 632)

Table 3

Registration Algorithm - Search for Composition of Translations and Rotations,

for a 512x512 image, 4 levels of decomposition, accuracies = _0 degrees and 6T pixels.
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Filter Size Levels of Sequential Parallel

Decomposition Timing (sec.) Timing (sec.)

2

10

12

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

3.13

3.61

3.91

4.41

3.99

4.54

4.88

4.87

4.50

5.91

6.07

5.98

5.47

7.12

7.55

7.55

6.57

7.90

8.86

8.92

17.43

21.21

21.99

23.31

0.0109

0.0114

0.1190

0.0123

0.0120

0.0138

0.0146

0.0154

0.0148

0.0163

0.0174

0.0186

0.0188

0.0203

0.0218

0.0188

0.0212

0.0231

0.0250

0.0286

0.0333

0.0369

0.0407

Table 4

Timings for the Wavelet Decomposition of a 512x512 Image;

Parallel Implementation on the MasPar MP-2

PE # Cray T3E Cray T3D Beowulf

1

2

4

8

16

2.382 6.709 4.664

1.303 4.284 2.390

0.604 2.022 1.279

0.330 0.896 0.739

0.196 0.520 0.545

Table 5

Timings for the Wavelet Registration of a 512x512 Image;

Parallel Implementations on Cray T3D, Cray T3E and Beowulf high-performance architectures
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Figure 2
(a) Original Landsat-Thematic Mapper Image

(Pacific Northwest)
(b) Wavelet Coefficients Corresponding to Figure la
(c) Figure la Rotated by 18 Degrees
(d) Wavelet Coefficients Corresponding to Figure lc
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--_ Bel_ Kotntion at Level 4 : 16 degrees

--,.- Best l_a,tilC_m _ _ 3 : 18 degrees

Figure 3a
Maxima of Wavelet coefficients for Level 4 (32x32) and Level 3 (size 64x64)

l_tmd_ons d l_[erence LH's : L_wl 2

Input LH : Level 2

Best R_otmdiom

Level 2 : 19 degrees

Figure 3b
Maxima of Wavelet coefficients - Level 2 (size 128x128)
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l_,.ota_ions of l_eferene® LH's - Level I

Best Rotation _t Level I : 15 Degrees
Figure 3c - Maxima of Wavelet coefficients for Level 1 (size 256x256) for Reference Images

Rotated 17,18,19,20, and 21 degrees and Compared t o the Input Image
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Figure 4a
Correlation Functions. Level 4

Figure 4b
Correlation Functions. Level 3
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Figure 4c
Correlation Functions. Level 2

Figure 4d
Correlation Functions - Level 1
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Rotation

(degrees)

Translation

(TX,TY)

(100,0)

(0,50)

(20,60)

(100,0)

(0,50)

(20.60)

"x" Values

5%

10%

15%

20%

5%

10%

15%

20%

5%

10%

15%

20%

5%

10%

15%

20%

5%

10%

15%

20%

5%

10%

15%

20%

Correlation

0.18

0.19

0.32

0.22

0.36

0.52

0.59

0.53

0.13

0.29

0.39

0.34

0.19

0.21

0.27

0.29

0.37

0.48

0.51

0.38

0.07

0.19

0.3

0.35

Computed "x"

0.13

0.13

0.14

0.13

0.13

0.15

Table 6

Adaptive Choice of Wavelet Histogram Threshold
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DATA

True Rotation

True Translation

SPATIAL CORRELATION'

(Only) Translation (plxels)

PHASE CORRELATION

(Only) Translation (pixels)

ITER EDGE MATCHING

Rotation (degrees)

Translation (pixels)

VAVELET REGISTRATIO|

Rotation (degrees)

Translation (pixels)

VAVE-REG: Error Rotatlo,

Error-Translation

GIRL

5

(20,60)

TM

4

(50,0)

5 55 5 0 18 18 4 4 0 0

(0.0) (0.0) (6,4) (20.60) (0.0) (0.50) tO,O) (5,2) (50,0) (5.2)

(20.61) (50,0) (5,2)

(20,60) (50.0) (5,2)

5 55 5 5 3 18 18 4 4 4 -I 0

(0,0) (0,0) (20,60) (6,4) (19.61) (0,1) (0,51) (0,0) (50.0) (5,2) (49,0) (5,2)

5 55 5 5 0 18 23 4 4 4 0 0

(0,0) (0.0) (20,60) (6,4) (20.60) (0,0) (0.50) (0.0) (50,0) (4.2) (50.0) (6.2)

0 0 0 0 0 0 5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 I 0 I

Table 7

Results of our Wavelet-Based Registration Compared to Other Methods and Applied to Two
Test Images (a Portrait, GIRL, see ref[66] and Figure 2a)

for Multiple Rotations and Translations
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Figure 5
Original A VHRR Image (Pacific Northwest)
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FIND BEST TRANSFORMATION AT LEVEL 4.

search theta in [ 0.00,10.00] and (TX,TY) in
with the increment: 4.00

[ 0.00,16.00IX[ 0.00,16.001,

for the threshold = 0.05 and the rotation = 0.00 Translation_optimal = ( 1.12, 0.56)

for the threshold = 0.10 and the rotation = 0.00 Translation optimal = ( I. 12, 0.56)

for the threshold = 0.15 and the rotation = 0.00 Translation optimal = ( I. 12, 0.56)

for the threshold = 0.20 and the rotation = 0.00 Translation_optimal = ( 1.12, 0.56)

for the threshold = 0.05 and the rotation = 4.00 Translation_optimal = ( 0.67, 0.00)

for the threshold = 0.10 and the rotation = 4.00 Translation_optimal = ( 1.33, 0.00)

for the threshold = 0.15 and the rotation = 4.00 Translation_optimal = ( 1.75, 0.00)

for the threshold = 0.20 and the rotation = 4.00 Translation_optimal = ( 1.75, 0.59)

for the threshold = 0.05 and the rotation = 8.00 Translation_optimal = ( 0.40, 0.00)

for the threshold = 0.10 and the rotation = 8.00 Translation_optimal = ( 0.40, 0.00)

for the threshold = 0.15 and the rotation = 8.00 Translation_optimal = ( 1.07, 0.00)

for the threshold = 0.20 and the rotation = 8.00 Translation_optimal = ( 2.13, 0.00)

At level 4, Rotation_optimal = 0.00 and Translation_optimal = ( 1.00, 0.00)
and the Correlation is : 0.312404

FIND BEST TRANSFORMATION AT LEVEL 3

search theta in [-8.00, 8.00], (TX,TY) in [-6.00,10.00]X[-8.00, 8.001
with the increment: 4.00 and the threshold: 0. I I

At level 3, Rotation_optimal = 8.00 and Translation_optimal = ( 2.00, 0.00)
and the Correlation is : 0.202801

FIND BEST TRANSFORMATION AT LEVEL 2

search theta in [ 4.00,12.00], (TX,TY) in [ 0.00, 8.00]X1-4.00, 4.00]
with the increment: 2.00 and the threshold: 0.09

At level 2, Rotation_optimal = 6.00 and Translation_optimal = ( 2.00, 2.00)
and the Correlation is : 0.238743

FIND BEST TRANSFORMATION AT LEVEL 1

search theta in [ 4.00, 8.00], (TX,TY) in [ 2.00, 6.00IX[ 2.00, 6.00]
with the increment: 1.00 and the threshold: 0.07

At level 1, Rotation_optimal = 5.00 and Translation_optimal = ( 5.00, 3.00)
and the Correlation is : 0.648763

INTERPOLATION TO FULL IMAGE: Rotation = 5.00 and (TX_TY) = (10.00r 6.00)

Table 8

Results of our Automatic Wavelet-Based Registration Applied to Figure 3
Search for Compositions of Rotations and Translations
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Figure 6 - Third Dataset - Map and Thirteen Images
of a Multi-Temporal Series of A VHRR-LAC Band 2 Images over South Africa
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Extracted from avhrr sa126 Extracted from s_hrr sa1488

Figure 7
Zoom on Coastlines Transformed by Wavelet-Registration,

Superimposed for Two of the A VHRR Images, "avhrr_sa126, avhrr_sa1488"
and Compared to the Manual Registration Results
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AVHRR DATA [sa1244 sa126 sa127 sa129 sal300 sal311 sa1322 sa133 sa1411 sa143 sa146

MANUAL REGISTRATION ]
Rotation 0 0 0 0 0 0 0 0 0 0 0

Translation (1,01 (0,0) (-I,-1) (-3.-1) (2,0) (I,0) (0,-I_ (0,-I) _0,-I) (-1,-31 (-3,-51

WAVELET REGISTRATION ]

Rotation ] 0 0 0 - I 0 0 0 0 0 0 -2

Translation ] (0,0) (0,0) (0,-2) (-6,-2) (4,0) (2,0) (0.-2) (0,-2) (0,-2) (0,-4) (-6,-6)

sa1488

0

(2,3)

0

(2,4)

Table 9

Results of the Wavelet-Based Registration on the AVHRR Dataset Over South Africa

- 40 -



National NASA Scientific and Technical Document
Aeronautics and

SpaceAdm,n,strat,on Availability Authorization (DAA)

The DA,4 aDOeOval p/oce_ ap##ett to all forms of #uDl=.c/_d NASA Sc_enn#c and redhn_cal /nfofrm_tto_ [S TI). whether dl$$emtnoted ,n _nf of Mecfftxt_cJIly It I5 to Do ttufiet_ by I _ Ongir_(

#l_e _$Dons/t_/e NASA PrOledt Off/car. Tecnntcal MO_tor, Jutho_ or other a_ofl_OnefO NASA olEcwl for a# Dfesantaflons. re_ort$, DaDet3,, and P_c'_N_tr_;s _ot Co/t/aM NASA STI. J L_J

_rD/alnations arlP 017 the t_cl( o/this form &f_ aM oresented ,n greater #eta# _n NPG 2_2002, "Gu_l_PJf /or Oocumentatlofl, At_ofoval, ond OJss_nat/o_ o/NASA SOI_utYc al_ r--I

T@o_n_cal Irtfon'nat/(_. ° I] M_lflE_J ,

.:.... . ,.. I, DOCUMENT/I_.ROJECT, IDENTIFICATION .,.:,_,_ .

TITLE

An Automated Parallel Image

Registration Technique Based on

The Correlation of Wavelet Features

AUTHOR(S)

Jacqueline Le Moigne

William J. Campbell

Robert F. Cromp

ORIGINATING NASA ORGANIZATION PERFORMING ORGANIZATION (if different)

NASA/Goddard Space Flight Center Code 935

CONTRACT/GRANT/1NTERAGENCY/PROJECT NUMBER(S) DOCUMENT NUMBER(S) DOCUMENT DATE

For presenra#ons, docum_ts, ot o#_r ST7 to be _u,t_ma#y #¢_#_d F_tuoen# throughelec_a'on_med_), _t_r

_nate infom_tt_n on _ intended pot_clEon suc_ as tllme. _. _ _ of _fe_. _. _ _m_ II
f_ma, or book flue avld _ _ _ n@gtt box. These documents must t_ [l_Jt_d to th_ NASA H_adquarte_J of

C._nter E._portCon¢,olAOrrar_r_tor /or _ova/ (see S_c#o_ /11_nd riO.

CHECK ONE (One of the [/v_ boxes denoting Secur#y Classification must be checked.)

r-7 SECRET

;__.---_ _"1

Z_I_--........7 I#ZTI"LT-----711]H

r-] SECRET RD _ CONFIDENTIAL _ CONFIDENTIAL RD _ UNCLASSIFIED

......... ----_---";'-_"_'--':_.r,- _ _._.._;__="" ......................

ITAR E-] EAR Export Controlled Document - USML Category ICCL Export Control

Classification Number (ECCN) (Documents marked in this block must have the

concurrence/approval of the NASA Headquarters or Center Export Conffo/ Administrator (see Secffon VIII).)

Confidential Commercial Document (check appropriate box at/eft and indicate below the appropriate lim#ation and

expirationS.

I"--] TRADE SECRET _ U.S. Government agencies and U.S. Government agency contractors only

[] SBIR _ NASA contractors and U.S. Government only

_] COPYRIGHTED E_] U.S. Government agencies only

D NASA personnel and NASA contractors only

_] NASA personnel only

Available only with the approval of issuing office:

Limited until (date)

PUBLICLY Publicly available documents must be unclassified, may nol be export controlled, may not contain trade secret or
AVAILABLE confidential commercial data, and should have cleared any applicable patents application process.

THIS r)OCUMENT MAY BE RELEASED ON I NASA HQ OR CENTER PATENT OR INTELLECTUAL PROPERTY COUNSEL SIGNATURE I DATE

(date) I I

[[] All documents issued under the following contract/grant/project number
may be processed as checked in Sections II and II1.

_[] The blanket release authorization granted on (date)

] is RESCINDED - Future documents must have individual availability authorizations.

[[] is MODIFIED - Limitations for all documents processed in the STI system under the blanket release should be changed to conform to
blocks as checked in Sections II and II1.

NASA FORM 1678 AUG 97 ' ' PLEASE CONTINUE ON REVERSE SLOE.



ABSTRACT

With the increasing importance of multiple platform/multiple remote sensing missions, fast and

automatic integration of digital data from disparate sources has become critical to the success of

these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a

correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is

tested successfully with data from the NOAA Advanced Very High Resolution Radiometer

(AVHRR) and the Landsat/Thematic Mapper (TM), which differ by translation and/or rotation. By

the choice of high-frequency wavelet features, this method is similar to an edge-based correlation

method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method

achieves higher computational speeds for comparable accuracies. This algorithm has been

implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the

MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium

workstations.
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